
CS352 Lecture - Efficient Query Processing / Query Processing Optimization

Last revised March 14, 2023
Objectives:

1. To understand why the choice of strategy for performing a query can have a 
huge impact on processing time

2. To be familiar with various strategies for performing selection operations
3. To be familiar with various strategies for performing join operations
4. To be familiar with how statistical information can be used for evaluating 

strategies

Materials:

1. Projectable of two different RA formulations of a query involving a select and a 
join

2. Projectable of query for join examples
3. Projectables of pseudo-code for 5 join strategies 
4. Projectables of two equivalent forms of a query as a tree
5. Projectable of n and V values for join size estimation

I. Introduction

A. Given a query, the DBMS must interpret it and "plan" a strategy for carrying 
it out.  For all but the simplest queries, there will probably be several ways of 
doing so - with total processing effort possibly varying by several orders of 
magnitude.

B. Some of the issues have to do with the way that data is physically stored on 
disk.   
 
Recall that, for most queries, the cost of accesses to data on disk far exceeds 
any other other cost, and becomes the most significant factor in determining 
the time needed to process most queries.
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C. Some of the issues have to do with the fact that several different, but 
equivalent, formulations of a query may be possible - perhaps with vastly 
different execution costs.  
 
Example: Given the schemes: BookAuthor(callNo, authorName) 

BookTitle(callNo, title)

1. The question "Give me the titles of all books written by Korth" can be 
answered by either of the following two relational algebra  queries: 

 

π σ   BookTitle |X| BookAuthor 
 title  authorName = 'Korth' 
 

π BookTitle |X| σ  BookAuthor 
 title  authorName = 'Korth' 
 
PROJECT

2. Because relational algebra is a procedural language, each of these queries 
implies a particular sequence of operations:

a) The first query suggests that we should first do a natural join of 
BookAuthor and BookTitle, then select from it the tuples with 
authorName = 'Korth', then project out the title field.

b) The second query suggests that we should first select only those tuples 
from Book Author where authorName = 'Korth', then join these with 
BookTitle, then project out the title field.

3. Suppose our database held 10,000 BookTitle tuples and 20,000 
BookAuthor tuples (an average of two authors/book.)  Suppose,  further, 
that only 2 BookAuthor tuples contained 'Korth'.  How would the cost of 
these two strategies compare?

a) The first strategy would process all 10,000 BookTitle tuples at  least 
once, and likewise all 20,000 BookAuthor tuples.  Further, it would 
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involve creating a intermediate relation with 3 attributes (callNo, title, 
authorName) and (presumably) 20,000 tuples.  Each of  these would 
need to be examined to see if it pertains to 'Korth'.  Thus, a total of 
50,000 tuples would need to be processed -  minimum. (And the 
minimum could only be achieved if the join is facilitated by an index 
on callNo for at least one of the two  original schemes.)

b) On the other hand, the second strategy might involve processing only 
2 BookAuthor tuples and the corresponding 2 BookTitle tuples (if 
appropriate indices exist) - for a total of 4 tuples.  This is an effort ratio 
of 50,000: 4 = 12,500:1.

4. A low-performance DBMS might put the burden on the user to formulate his/
her queries in such a way as to allow the most efficient processing of them.  A 
good DBMS, however, will transform a given query into a more  efficient 
equivalent one whenever possible. 

 

Example: If the first query above were given to a simple DBMS, it  would 
perform very much less efficiently than if it were given the second.  However, 
a sophisticated DBMS would transform the first query into something like the 
second before processing it if that were the form it was given.

D. The material assigned in the book goes into some detail about how one 
estimates the cost of various plans for executing a query.   For a database that 
is stored on magnetic disk, it turns out that the cost of accessing the data on 
disk dominates the cost; but when the data is stored on SSD devices or even 
in memory, other factors such as computational cost have to be considered as 
well. A sophisticated DBMS has to consider these factors as well. 
 
However, for simplicity, in comparing ways to process a query, we will focus 
just on minimizing disk accesses, which will help us identify key ideas.

E. In the remainder of this series of lectures, we want to explore the following topics:

1. Strategies for performing selection
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2. Strategies for performing joins 

 

Both of these, in turn, are influenced by issues such as the way the data is 
stored physically on the disk, and the availability of indices

3. Rules of equivalence for transforming queries

4. The use of statistical information to help evaluate query-processing 
strategies.

II. Selection Strategies

A. Consider a selection expression like 
 
σ SomeTable  
 SomeCondition 
 
We consider several possibilities for the condition

1. It involves searching for an exact match for the value of some attribute 
(e.g. “borrowerID = '12345'”), and the attribute is a candidate key for the 
table, so we expect at most one match.

2. It involves searching for an exact match for the value of some attribute, 
but the attribute is not a candidate key for the table, so we can have any 
number of matches

3. It involves searching for a value of some attribute lying in some range 
(e.g.“where age between 21 and 65” or “where age < 21”),

4. It involves some more complex condition - perhaps involving a 
compound condition (“and” or “or”) or the values of two or more 
attributes.
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B. One way to handle any selection condition is to use linear search - scan 
through all the tuples in the table, and find the ones that match. 
 
If the tuples are blocked, then it suffices to perform one disk access for a 
block, and then scan the buffered copies of the records in turn. 
 
Example: a table with 10,000 tuples - blocked 20 per block - would require 
500 disk accesses - which would take on the order of 500*10ms = 5 seconds.

C. Linear search can often be avoided if the table has a relevant index.

1. Exact match queries can be facilitated if the table has an index on the 
attribute we are searching for.   At this point, we need to consider a 
number of possibilities:

a) The attribute on which the search is based is a superkey.  In this case, 
searching the index will take us directly to the one and only tuple 
desired. This requires one block access plus whatever accesses are 
needed to use the index.

b) The attribute on which the search is based is not a superkey - so there 
will likely be multiple matches.

(1)If the index is clustering (the primary index for the table) , then the 
index will take us to the first matching tuple.  Since the index is in 
key order,  it is likely that other matches will be in the same block, 
or perhaps the next block - so 1 (or sometimes 2 or more) block 
accesses plus whatever accesses are needed to use the index.

(2)If the index is non-clustering, then the index entry contains pointers 
to the relevant tuples, each of which is likely in a different block - 
so we need as many block accesses as there are matches plus 
whatever is needed to use the index.
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2. If the query is a range query, an ordered index will take us to the first tuple that 
satisfies the query.   (We search for the starting value of the range, and the index 
takes us to the first tuple greater than or equal to this.)

(1)If the index is clustering (the primary index for the table), then 
successive tuples will lie in the same or successive blocks.  Each 
block containing a tuple that matches the query will be processed 
just once.

(2) If it is non-clustering but ordered (e.g. a B+ tree), then we can find 
successive matching tuples following pointers from successive 
index entries.  The number of blocks read will be one per match 
found by the query.

(3)However, if it is not ordered (a hashtable) then the index doesn't 
really help in this case.

3. If the query has a more complicated structure (e.g. involves and, or, not), it may 
be possible to  make use of indexes to create a list of pointers to tuples and then 
perform the computation on the lists before retrieving the actual tuples.

4. Of course, when estimating the cost of a selection using an index, we 
need to consider both the cost of accessing the relevant block(s) of the 
index and the cost of accessing the data.

a) For example, if a table is stored as a B-Tree of height 3, then access to a 
piece of data using the index involves - in principle - three disk accesses.

b) However, we will almost certainly keep a copy of the root of the tree in a 
buffer - reducing the number of accesses to two.  Moreover, we may be 
able to buffer the second level blocks of the index as well - in which case 
an access using the index only involves accessing the data block.

c) Even if we can't do this, though, use of an index will still beat linear 
search - 3 disk accesses is a lot less than retrieving every block! 
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III.Performing Joins Efficiently

A. Joins are the most expensive part of query processing, because the number of 
tuples examined to do a join can approach the product of the size of the two 
relations involved.  Thus, the query optimizer must give considerable 
attention to choosing the best join strategy.

B. As a worst-case example, consider the following SQL query, which finds the 
names of borrowers who have over due books: 
 
select first_name, last_name  
from Borrower join CheckedOut on  
    Borrower.borrowerID = CheckedOut.borrowerID  
where date_due < current date;  
 
This is almost equivalent to the relational Algebra expression 
 
π σ   Borrower |X| CheckedOut 
 first_name  book is overdue 
 last_name 
 
PROJECT 
 
(Actually, these are not quite equivalent - why?) 
 
ASK 
 
RA eliminates duplicates, which would arise if a borrower had more than one 
overdue book.  The SQL would need distinct, which would call for an extra 
processing step after the join to eliminate duplicates.  We will ignore this for 
now (and not eliminate duplicates) but will talk about later. 

1. Assumptions for examples: 

 

Borrower has 10.000 tuples blocked 20/block = 500 blocks 

CheckedOut has 2000 tuples blocked 20/block = 100 blocks 
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a. Although the join is not a cartesian join, performing it will require 
examining 10,000 * 2000 = 20 million tuples to see if borrowerIDs 
match and the book is overdue.

b. One simplifying step - which a smart DBMS would do - is to do the 
selection based on the book being overdue before doing the join, which 
could result in fewer potential matches being considered (unless, of 
course, every book is overdue!).  However, for this series of examples, 
we will not do this - considering that comes later.  

2. This join can be computed in several different ways that differ in cost by 
orders of magnitude:

3. The simplest scheme would be 
 

for (int i = 0; i < 10000; i ++)  
{  

retrieve Borrower[i];  
for (int j = 0; j < 2000; j ++)  
{  

retrieve CheckedOut[j];  
if (Borrower[i].borrowerID==CheckedOut[j].borrowerID)  
check to see if overdue and if so add to result  

}  
}  
 

PROJECT 

a) This scheme is called NESTED LOOP JOIN.

b) How many disk accesses does this strategy require?  

i. Since we can buffer one block of borrower in memory, the 10,000 
tuples we access from this table require 500 block reads.  

ii. In the case of the inner relation (BookAuthor), we go through it 10,000 
times.  Each time through, we only need to need to read each of the 100 
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blocks once when retrieving the first tuple in the block, since the block 
we need is already buffered for the remaining 19 tuples.  So we do 
10,000 * 100 = 1,000,000 disk accesses to read the CheckedOut tuples

iii.we will ignore the number needed  to write the result - which will 
hopefully be few!

iv.  So we get a total of at least 1,010,000 disk accesses.  If each disk 
access takes on the average 10 ms, and no opportunities for 
parallelism exist, we would estimate this amounts to 10100 seconds 
= 168 minutes = 2.8 hours

4. However, since the two relations are physically stored in blocks on disk 
containing several tuples, a MUCH BETTER scheme would be: 

 

for (int i = 0; i < 10000; i += 20)  
{  

retrieve block containing Borrower[i]..Borrower[i+19];  
for (int j = 0; j < j < 2000; j += 20)  
{  

retrieve block containing CheckedOut[j]..CheckedOut[j+19];  
for (int k = 0; k < 20; k ++)  

for (int l = 0; l < 20; l ++)  
   if (Borrower[i+k].borrowerID ==  

CheckedOut.[j+l].borrowerID)  
check to see if overdue and if so add to result  

}  
}  
  

PROJECT 

a) At first glance, this looks like a much worse strategy - since we now have 
4 nested loops!

b) However, when the relative cost of in-memory processing and disk accesses 
is taken into consideration, this strategy turns out to be much better.
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(1)For the outer loop, this would require only 500 accesses to retrieve all 
the Borrower tuples.

(2)As before, the inner loop requires only 100 accesses each time through 
the BookAuthor table, but now this done only 500 times - for a total of 
100*500 = 50,000 accesses 

(3)The grand total is thus 50,500, plus writes needed for the result.  This 
is almost 20 times better than the nested loop join.  We're now down to 
50,500 * 10ms = 505 seconds (about 8.4 minutes).   

 

This strategy is called BLOCK NESTED JOIN. 

5. However, if a moderate amount of internal memory is available for buffering, 
we could do even better.  Note that the 2000 CheckedOut tuples could be 
stored using just 100 buffers (probably under a megabyte of RAM).  We thus 
consider the following approach: 
 
for (int j = 0; j < 2000; i += 20)  

retrieve and buffer block containing  
CheckedOut[j]..CheckedOut[j+19];  

 
for (int i = 0; i < 10000; i += 20)  
{  

retrieve block containing Borrower[i]..Borrower[i+19];  
for (int j = 0; j < j < 2000; j += 20)  
{  

// No need to retrieve CheckedOut blocks  
for (int k = 0; k < 20; k ++)  

for (int l = 0; l < 20; l ++)  
   if (Borrower[i+k].borrowerID ==  

CheckedOut.[j+l].borrowerID)  
check to see if overdue and if so add to result  

}  
}  
 

PROJECT  
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Now we only need 100 + 500 = 600 disk accesses for reading each of the two 
relations exactly once!  Further, it is clear that this is the best we can do, since 
we must consider each tuple of each relation at least once, and the two  
relations together occupy 600 blocks.   Our time is now down to about 
600*10 ms = 6 seconds! 
 
Since we only need to buffer the smaller of the two tables, this strategy is 
applicable whenever there is enough memory to buffer at least one of the 
tables in its entirety.

C. Natural joins (or theta joins based on the equality of some attribute values) can 
be greatly expedited if indices are available

1. In computing a join, we can scan through the tuples of one relation. For each 
tuple, we find the tuple(s) of the other relation that join with it (if any) and 
construct a new tuple for each one found.

2.  In the worst case, finding matching tuples in the second relation would 
require a sequential scan of that relation.  Note that this means that we would 
have to read through the second relation one complete time FOR EACH 
TUPLE (OR MORE LIKELY EACH BLOCK) in the first relation.

(1)However, if the second relation has an index or indices on the join  field(s) 
(or even on one of the join fields if there is more than one),  then the 
sequential scan of the second relation can be avoided.  Instead, we use the 
index to locate tuples in the second relation that are candidates for joining 
with the current tuple in the first  relation. 

 

Suppose our Borrower table has an index based on the borrowerID.  Then we 
might use the following strategy: 
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for (int i = 0; i < 2000; i += 20)  
{  
  retrieve block containingCheckedOut[i]..CheckedOut[i+19];  

for (int j = 0; < j < 20; j ++)  
{  

look up CheckedOut[i+j].borrowerID in the  
borrowerID index of Borrower  
// There must be a match in Borrower table  
// due to foreign key constraint  
if book is overdue add to result  

}  
}  
 
PROJECT 
 

(Obviously, we could reduce the number of index lookups by checking for 
overdue first - but so we can compare with the other strategies we will not. 

 

This strategy is called INDEXED LOOP JOIN 
 

We now do 100 accesses to read the CheckedOut table, and a maximum of 
2000 index lookups and retrievals.  Assume the average cost of doing this is 
2 disk accesses - then our total is 4100 accesses - which in this case is not as 
good as our previous example where we could buffer one whole table, but is 
a lot better than Nested Block Join and so would be preferred if we were 
dealing with tables too large to preclude buffering.

D. Because an appropriate index can greatly speed a join - especially if the index 
can be buffered in memory though the table cannot - it may be desirable in some 
cases for the query processor to create a TEMPORARY INDEX for one of the 
relations being joined - to be discarded when the query has been processed.   

 

Example: Suppose neither Borrower nor CheckedOut has a relevant index.  (An 
index on callNumber for CheckedOut wouldn't help)  If we had to do the join 
Borrower |X| CheckedOut, we might choose to build  a temporary index for the 
Borrower table. (We prefer this because there are fewer tuples in the 
CheckedOut table - and hence fewer accesses needed to the index.) 
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1. Each entry in the index for Borrower might occupy on the order of 10 bytes.   
If we use a dense index (as we must unless Borrower is  physically ordered 
by borrowerID) then the overall index will be about 100,000 bytes long - not 
a problem for main memory on a machine of any size.

2. Constructing the index, then, will require processing each of the tuples of 
Borrower once - for a total of 10000 tuples or 500 disk  accesses

3. The join itself would require a maximum of 2000 accesses for the actual 
Borrower tuple (but none for the index since it's now in memory)- for a total of 
2100 accesses in all - a worthwhile improvement over not using an index if we 
cannot buffer a whole table.   (Which we probably could in this case :-))

E. Natural joins can also take advantage of the PHYSICAL ORDER of data in the 
database.  In particular, if two relations being joined are both physically stored 
in ascending order of the join key, then a technique known as MERGE JOIN 
becomes possible. 
 
Suppose, for the sake of illustration, that the Borrower table is stored in order of 
borrowerID, and the CheckedOut table is also stored in this order. 

1. The following is the basic algorithm: 
 
get first tuple from Borrower;  
get first tuple from CheckedOut;  
while (we still have valid tuples from both relations)  
{  

if (Borrower.borrowerID == CheckedOut.borrowerID)  
{  

if the book is overdue output one tuple to the result;  
get next tuple from CheckedOut  
// We might have more matches for this borrower,  
// so keep current borrower tuple  

}  
else if (Borrower.borrowerID < CheckedOut.borrowerID)  

// Can't possibly be more matches for this borrower  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get next tuple from Borrower;  
else  

// See if this borrower has another book overdue  
get next tuple from CheckedOut;  

}  
 

PROJECT 

 

Notice that this is only applicable if both tables are clustered based on 
the attribute they have in common - and wouldn't work as written if 
duplicate names could occur in both tables!

2. Using this strategy, we only fetch each tuple once, for a total of 600 disk 
accesses - the same as what we could get if we were able to buffer one of the 
tables.

F. The book discusses another strategy called HASH JOIN which can be used with 
hash indices in which we use the hashing function(s) to identify sets of blocks 
that can contain the same values of the join attributes.

G. One other factor we need to consider when doing two or more joins is join order.  
When there are multiple joins involved, performance may be very sensitive to 
the order in which we do the joins. 

 

Example: suppose we want to print out a list of borrowers together with the 
authors of books they have out.  This would involve a query like: 
 
π Borrower |X| BookAuthor |X| CheckedOut 
 lastName, 
 firstName, 
 authorName

1. Suppose, for now, that there are 10,000 Borrowers, 2000 CheckedOuts, and 
10,000 BookAuthor tuples.  Suppose, further, that each Book has an average 
of two authors (so we expect each CheckedOut tuple to join with two 
BookAuthor tuples).
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2. Natural join is a binary operation, so the three-way join would normally be 
done by joining two tables, then joining the result with the third.  Since 
natural join is both associative and commutative, this means that there are 
basically three ways to perform our joins: 
 

(Borrower |X| BookAuthor) |X| CheckedOut 
(BookAuthor |X| CheckedOut) |X| Borrower 
(Borrower |X| CheckedOut) |X| BookAuthor 
 

(each of these has commutative variants which have no effect on the actual 
work involved in performing the operation, so we ignore these variants).

3. In each case, we create a intermediate table by joining two tables, then join 
this with the third.  What is interesting is to consider the size of the 
intermediate table created by each order.

a. In the first case, we join two tables that have no attributes in common, so 
the natural join is equivalent to a cartesian join.  The intermediate table 
has 100 million tuples!

b. In the second case, since each book has, on the average, 2 authors, we 
expect the intermediate table to contain 2 x 2000 = 4000 tuples.

c. In the third case, since each CheckedOut tuple is paired with exactly one 
Borrower, we expect the intermediate table to contain 2000 tuples. 
 

Clearly, one of these join orders is best, one is nearly as good, and one is 
really bad.

4. Actually. of course, each order ultimately produces the same number of 
tuples in the result.  (If it didn't, something would be badly wrong) 

a. The first order joins a intermediate table of 100 million tuples with a table of 
only 2000.  A given borrower appears in the intermediate table an average of 
two times - once for each author of each book in the library, and the natural 
join matches by borrowerID so the result table has 4000 tuples.
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b. In the second case, we join a intermediate table of 4000 tuples with the 
Borrower table.  Since each tuple in the intermediate table contains a 
borrowerID which matches just one borrower tuple, we again expect the 
result to have 4000 tuples.

c. In the third case, we join a intermediate table of 2000 tuples with the 
BookAuthor table.  Since each tuple in the intermediate table contains a 
callNumber that matches an average of two tuples in the BookAuthor 
table, we again expect 4000 tuples in the result.

5. We will look at formalizing the reasoning we have done here by using 
statistical data about the database tables later in this lecture.  For now we 
note that the amount of work needed to satisfy a query can be very sensitive 
to join order.

a) Simple DBMSs may simply perform joins in the order implied by the code.

b) Good DBMSs may rearrange joins in order to minimize the size of 
intermediate table(s). 

IV.Sorting

A. While there is no inherent order to database tables, we often require the results 
to be put in some order before presenting them to the user.

1. One obvious reason for this is to implement the order by clause in SQL.

2. But this is also often done when we need to eliminate duplicates in a result - as 
specified by distinct in SQL.  It turns out that often the fastest way to do this 
is to sort the table by result, which puts duplicate tuples next to each other.

B. We skipped the book section on sorting and will not discuss here, since sorting 
is a topic in CPS222.
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V. Rules of Equivalence For Queries

A. The first step in processing a query is to convert it from the form input by the user 
into an internal form that the DBMS can process. This step is called query parsing.

1. This task is not different in principle from the parsing done by a compiler 
for a programming language, so we won't discuss it here.

2. The internal form may well be some sort of tree - e.g. our first example 
(titles of books written by Korth), if formulated as 
 
select title  

from BookTitle natural join BookAuthor  
where authorName = 'Korth'  

 

is equivalent to the relational algebra expression 
 

π σ   BookTitle |X| BookAuthor 
 title  authorName = 'Korth' 
 

which in turn is equivalent to the following tree 
 

 
PROJECT SQL, RA, TREE 
         

π

σ

|X| =

BookTitle    BookAuthor authorName    'Korth'

title
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3. However, the relational algebra expression could be transformed into a second, 
equivalent query by an operation on the tree (moving selection inside join) 
 
π BookTitle |X| σ  BookAuthor 
 title  authorName = 'Korth' 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PROJECT RA, TREE 

4. However,  for our purposes it will suffice to proceed as if relational 
algebra were the internal form, since a tree like this can always be 
uniquely constructed from a given relational algebra query.    
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B. Because relational algebra is a procedural language,  each formulation of a 
query implies a certain plan for evaluating it. 

1. For example: 
 
 π σ   BookTitle |X| BookAuthor 
 title  authorName = 'Korth' 
 
implies that we first join BookTitle and BookAuthor, then select tuples for 
which the authorName is Korth (discarding the rest), and then project the 
title from these. 

2. But: 
 
π BookTitle |X| σ  BookAuthor 
 title  authorName = 'Korth' 
 
implies that we first select tuples from BookAuthor for which the 
authorName is Korth, then join only these with BookTitle, and the project 
the title from the result of the join.

3. We say that two formulations of a query are EQUIVALENT if they 
produce the same final answer, except for a possibly different order of the 
rows (relations are sets, so order is not important.)  Thus, both of our 
formulations in the previous example  were equivalent. 
 
The book goes into an extensive discussion of rules of equivalence, but 
we will not pursue this further.

4. It turns out that there are some transformations that are almost always 
beneficial:

a) Do selection as early as possible (move selection inward).
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(1)Example: if we have 
 

σ     RelationA |X| RelationB 
SomeExpression 
 
and SomeExpression involves only attributes from one of the two 
relations (say RelationB), then we can convert the query to an equivalent 
- and usually more efficient - form: 
 
RelationA |X| σ  RelationB 

  SomeExpression  
 
(This is, in fact, the transformation that was used in the above example)

(2)Suppose, however, we have a selection expression which involves 
attributes from BOTH relations in the join.  In this case, it may not 
be possible to move the selection operation inward. 
 

Example: we considered the following query earlier: 
 
σ Borrower X BookAuthor 
 Borrower.lastName = BookAuthor.authorName 
 
Clearly, this requires us to do the join before we can do the 
selection.

(3)However, sometimes when a selection expression involves 
attributes from both relations in a join we can still more selection 
inward by looking at the structure of the selection expression itself. 
 
Example: we might want to find out what books (if any) that cost 
us more than $100.00 to buy are now overdue.  This requires the 
query: 
 
σ Book |X| CheckedOut 
 purchasePrice > 20.00 and dateDue < today 
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By taking advantage of the fact that any selection condition of the 
form: 
 
σ 
 ConditionA and ConditionB  
 
is equivalent to 
 
 σ   σ 
 ConditionA    ConditionB  
 
our query is equivalent to: 
 
σ σ     Book |X| CheckedOut 
 purchasePrice > 20.00     dateDue < today 
 
or 
 
 
(σ Book ) |X| (σ     CheckedOut) 
 purchasePrice > 20.00   dateDue < today 

b) A second heuristic is similar to the first: do projection as early as 
possible (move projection inward.)

(1)The motivation here is that projection reduces the number of 
columns in a relation - hence the amount of data that must be moved 
around between memory and disk, or stored in a temporary relation 
in memory.  In particular, if a query involves constructing an 
intermediate result relation, then use of this heuristic may result in 

(a)being able to keep the temporary relation in memory, rather than 
storing it on disk
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(b)or allowing more tuples of the temporary relation to be stored in 
one block - thus reducing disk accesses.

(2)Example: 
 
π Borrower |X| CheckedOut |X| Book 
 lastName, 
 firstName, 
 title, 
 dateDue  
 
could be done somewhat more efficiently as: 
 
π Borrower |X| (π CheckedOut |X| Book) 
 lastName   borrowerID 
 firstName   title 
 title   dateDue 
 dateDue 
 
which reduces the size of the intermediate table created by the first 
join.  (Note that we need to keep one attribute from this join that 
we don't need in the final result to allow the second natural join to 
be done.)

(3)The benefits gained by this heuristic may not be as great as those 
from the move selection inward heuristic - but it's still worth 
considering.

C. Fortunately, the onus is not on the user to figure out the most efficient way to 
formulate a query.

1. In general, a commercial DBMS  will develop a number of different 
strategies for equivalent ways of evaluating a given query, estimate the 
cost for each, and then choose the one that appears to have the lowest 
overall cost.
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a. The simplest cost measure for a query is total disk accesses  This is 
because the cost of a disk access is so high relative to other operations.  
In general, we will prefer the strategy that processes one of the 
equivalent forms of the original query with the fewest disk accesses.

b. With the increasing use of SSDs to store part or all of a database, disk 
accesses are no longer a sufficient measure of cost, though, since while 
SSD access times a greater than time for access to information in 
memory, the ratio is not nearly as great.

c. Sophisticated optimizers consider things like:

i. Where relevant tables are stored (disk or SSD or possibly even 
main memory)

ii. The existence of indexes and the possibility of creating a temporary 
index just for one query.

iii.The order in which tables are stored.

iv. Computationally-expensive computations.

2. A lot of effort goes into determining accurate cost measures and coding 
sophisticated optimizers - one reason why top DBMS's are quite 
expensive!

3. Nonetheless, giving some thought to formulating queries in a reasonably 
efficient style is just good practice, I think.
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VI.Use of Statistical Information to Choose an Efficient Query Processing 
Strategy

A. We noted earlier that a DBMS may keep some statistical information about each 
relation in the database.  

1. The following statistics may be kept for each table.

a) For each relation r, the total number of tuples in the relation.  We denote 
this nr.

b) For reach relation r, the total number of disk BLOCKS needed to store it.  
We denote this by br.

c) For each relation r, the size (in bytes) of a tuple.  We denote this by lr

d) For each relation r, the blocking factor (# of tuples per block).  We denote 
this by fr.  Assuming tuples do not span across blocks, his is simply 
floor(blocksize / lr) 
 
(Actually, if we can compute some of these from the others, so we don't 
need to keep all of them - e.g. the following relationship holds among the 
above if the tuples of a relation are stored in a single file without being 
clustered with other relations. 
 
br = ceiling( nr / fr )

2. The following statistics may be kept for each column of a table

a) For each attribute A of each relation r, the number of different values that 
appear for A in the relation.  We denote this V(A,r). 
 
Note that if A is a superkey for r, then V(A,r) = nr
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b) A corollary of this is the fact that, for any given value that actually occurs 
in r, if A is not a superkey then we can estimate the number of times the 
value occurs as: 
 
nr / V(A, r) 
 
(where this is just an estimate, of course - the true count for a given value 
could be as small as 1, or as many as nr - V(A,r) + 1.)

c) The formula above assumes that all values of an attribute are equally 
probable, but often some values (or even just one) are occur more 
frequently than others.  For this reason, sophisticated DBMS may store 
more detail about the frequency of occurrence of different values such as 
a histogram of the relative frequency of values lying in different ranges.  
(This was discussed in the book.)

3. Fortunately, the table statistics are very easy to maintain - in fact, they're 
needed in the meta-data in any case.  The column statistic is harder to 
maintain in general, but V(A,r) is relatively easy if the attribute A is indexed 
(just maintain a count of index entries).  Fortunately, V(A,r) tends to be of 
most interest for those attributes A which also tend to be prime candidates 
for indices.   Statistical information may also be updated during time periods 
when the DBMS is not busy processing user transactions.

B. We can use these statistics to estimate the size of a join.

1. In the case of the cartesian product r X s, the number of tuples is simply nr * 
ns, and the size of each tuple in the result is lr + ls.

2. In the case of a natural join r |X| s, where r and s have some attribute A in 
common, we can estimate the size of the join two ways:
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a) Estimate that each of the ns tuples of s will join with 

 

nr / V(A, r) tuples of r

b) Estimate that each of the nr tuples of r will join with 

 

ns / V(A, s) tuples of s

c) The first formulation is equivalent to nr * ns / V(A, r) and the second 
is equivalent to nr * ns / V(A, s).  Clearly, these are two different 
numbers if V(A,r) ≠ V(A, s).   However, if this is the case, then it must 
be that some of the values of A that occur in one table don't occur in 
the other - so we want to use the smaller of the two estimated sizes - 
leading to the following estimate for the size of r |X| s: 

 

min( nr * ns / V(A,r),  nr * ns / V(A, s) ) =  
nr * ns / max(V(A,r), V(A,s))

d) Of course, this estimate could be far from correct in a particular case. 
 
Example: suppose we performed a natural join between tables for 
CSMajorsAtGordon and PsychologyMajorsAtGordon, based on studentID. 

 

Since V(id, CSMajorsAtGordon) = nCSMajorsAtGordon and 
V(id, PsychologyMajorsAtGordon) = nPsychologyMajorsAtGordon 

 

and since nPsychologyMajorsAtGordon > nCSMajorsAtGordon, we would 
estimate the size of the join to be nCSMajorsAtGordon - but it was actually 4 
when I consulted the data two years ago while revising this lecture. 

 

However, as a tool for selecting query strategies, these estimates are still very 
useful - since the alternative of actually carrying out the various strategies 
and then comparing the costs is hardly helpful!
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e) In order to make further estimations, it is also helpful to note that we can 
estimate V(A, r |X| s) = min(V(A, r), V(A, s)) - i.e. some tuples in the 
relation having the larger number of values don't join with any tuples in 
the other relation, and thus don't appear in the result.

C. We now consider how these statistics may be used to help us decide on the order 
in which to perform multiple joins

1. Earlier, we considered a a query that prints borrower names an authors of 
books they have checked out. 

 

π Borrower |X| BookAuthor |X| CheckedOut 
 lastName, 
 firstName, 
 authorName

2. We saw that the total amount of effort in processing the query varied greatly 
depending on the order in which the joins are performed.  We established this 
by using informal reasoning to assess the various strategies.  We now want to 
see how statistical data could be used to arrive at the same conclusions 
algorithmically.  To review, the join orders we want to compare are: 

 

(Borrower |X| BookAuthor) |X| CheckedOut 
(BookAuthor |X| CheckedOut) |X| Borrower 
(Borrower |X| CheckedOut) |X| BookAuthor 

3. Suppose the relevant statistics have the following values (all recorded in the 
meta-data or calculated form the meta-data):

a) nBorrower = 10,000

b) nCheckedOut = 2000

c) nBookAuthor = 10,000 

 

(these are the values we used in the example)

27



d) V(borrowerID, Borrower) = 10,000 (since borrowerID is a key for  
Borrower, each tuple must have a distinct value)

e) V(borrowerID, CheckedOut) = 1000 - so we expect each borrowerID that 
occurs at all to occur in 2000/1000 = 2 CheckedOut tuples - i.e. each 
borrower who has books out has an average of 2 out

f) V(callNo, CheckedOut)  = 1666 - so we expect each callNo that occurs at 
all to occur in 2000/1666 = 1.2 CheckedOut tuples.  (Remember that we 
have multiple copies of any given book.  I chose the particular number I 
did to simplify calculations!)

g) V(callNo, BookAuthor)   = 5000 - so we expect each callNo to  occur in 
10000/5000 = 2 BookAuthor tuples 
 
PROJECT

4. Let's now consider how many intermediate result tuples we would expect 
each join order to produce:

a) (Borrower |X| BookAuthor) |X| CheckedOut 

 

Intermediate table needed for Borrower |X| BookAuthor - no attributes in 
common (cartesian join) 

 

estimated nBorrower |X| BookAuthor = nBorrower * nBookAuthor = 
10,000 * 10,000 = 100 million 

b) (BookAuthor |X| CheckedOut) |X| Borrower 

 

Intermediate table needed for BookAuthor |X| CheckedOut - join attribute 
= callNo 

 

nBookAuthor = 10,000; nCheckedOut = 2000, 
V(callNo, BookAuthor) = 5000; V(callNo, CheckedOut) = 1666 
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Using the larger V value, we get 

 

estimated nBookAuthor |X| CheckedOut = 10,000 * 2000 / 5000 = 4000 

c) (Borrower |X| CheckedOut) |X| BookAuthor 
 
Intermediate table needed for Borrower |X| CheckedOut - join attribute = 
borrowerID 
 
nBorrower = 10000; nCheckedOut = 2000, 
V(borrowerID, Borrower) = 10000; V(borrowerID, CheckedOut) = 1000 
 
Using the larger V value, we get 
 
estimated nBorrower |X| CheckedOut = 10000*2000 / 1000 = 2000

d) These are the same numbers as we got before, but this time using a less 
ad-hoc approach. 
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